

Bergvesenet rapport nr	Intern Journal nr	Internt arkiv nr	Rapport lokalisering	Gradering
				5714

Kommer fra arkiv	Ekstern rapport nr	Oversendt fra	Fortrolig pga	Fortrolig fra dato:
	Aspro	Elkem AS		

Tittel
Geological mapping in the Søve-area, Fen Carbonatite Complex, South Norway.

Forfatter Morten C. Andersen	Dato 22.11. 1983	År	Bedrift (oppdragsgiver og/eller oppdragstaker) AS Megon
Kommune Nome	Fylke Telemark	Bergdistrikt	1: 50 000 kartblad 17134
			1: 250 000 kartblad Skien
Fagområde Geologi	Dokument type	Forekomster (forekomst, gruvefelt, undersøkelsesfelt) Fensfeltet	
Råstoffgruppe Industrimineral	Råstofftype RE		

Sammendrag, innholdsfortegnelse eller innholdsbeskrivelse

Detailed geological mapping (1:1000) was carried out within a 0.4 km² area in the northernmost part of the Fen Carbonatite Complex.

Structural analysis of faults and faultcontrolled sovite-intrusions could suggest:

- 1) two generations of sovite-intrusion and
- 2) the presence of high-level sovitic residual-magma. These considerations are however speculative and needs further testing in other parts of the complex.

No new mineralization were found, but new exposures of lamprophyric rocks were located SSW of torsnes. Although this lamppophyre (in contact to lamppophyres previously encountered in Tuftehavna area) proved unmineralized, the presence of lamppopyritic rocks in the northern part of carbonatite complex points towards a more widespread occurrence of this rock-type than previously realized.

PROSPEKTERING

GAMLE RINGERIKS VEI 14, POSTB. 83 - 1321 STABEKK

HELEID AV AKTIESELSKABET SYDVARANGER

Tlf. (02) 12 05 18
(02) 53 08 34

Telex 72 987 aspro n

INTERN RAPPORT.

DATO: 22.11.83

RAPPORT NR: 1454

KARTBLAD 1713 IV

Antall sider
— II — bilag 1

SAKSBEARBEIDER

Morten C. Andersen, exploration geologist

RAPPORT VEDRØRENDE:

Geological mapping in the Søve-area,
Fen Carbonatite Complex, South Norway.

FORDELING
OSLO:

1	Bergmesteren
1	I.D. Bergverkskontoret
1	U.S.B.

RESYMÉ:

Detailed geologic mapping (scale 1:1000) was carried out within a 0.4 km² area in the northernmost part of the Fen Carbonatite Complex.

Structural analysis of faults and fault-controlled søvite-intrusions could suggest:

- 1) two generations of søvite-intrusion and
- 2) the presence of a high-level søvitic residual-magma. These considerations are however highly speculative and needs further testing in other parts of the complex.

No new mineralizations were found, but new exposures of lamprophyric rocks were located SSW of Torsnæs. Although this lamprophyre (in contrast to lamprophyres previously encountered in the Tuftehavna area) proved unmineralized, the presence of lamprophyric rocks in the northern part of the carbonatite complex points towards a more widespread occurrence of this rock-type than previously realized.

KIRKENES:

ANDRE:

2	Union Minerals
1	Fenco
1	Siv.ing. Cappelen
1	Elkem
1	Å.S.V.
4	ASS

KOMMENTAR:

INTRODUCTION

Geological mapping was carried out in the period Sept. 19. to Oct. 7 during which a total of 15 days were spent in field.

Field work was concentrated on the peripheral parts of the carbonatite complex, in the area between the Hydro Quarry and Torsnæs - see Fig. 01. The westernmost part of this area is previous mapped in detail by S.D. Olmore (Olmore, 1981), while the area from Søve to Torsnæs so far has been subjected to reconnaissance survey by S.D. Olmore, who recommended further detailed work.

All of the Fen area was mapped by E. Sæther in 1946, and the Søve Area was subjected to mining operations for Nb by A/S Norsk Bergverk in the period 1953-1965. Results of the geologic mapping and the prospecting and mining operations are presented in the works of Sæther (1957) and Børlykke & Svinndal (1960).

TABLE OF CONTENTS

	page
Petrographic descriptions/field relations	
Fenite	1
Syenitic fenite/Nepheline syenite	1
Fenite breccia	1
Basic silicate rock	1
Søvite	2
Lamprophyre	2
Rauhaugite type II	3
Damtjernite/Damtjernite breccia	3
Structural geology	4
Mineralizations	5
Conclusions	5
Figures	6
References	10

PETROGRAPHIC DESCRIPTIONS/FIELD RELATIONS

Fenitized rocks

Fenite:

In this report the term fenite covers all rock types which can macroscopically be recognized as metasomatic altered Precambrian gneiss. The fenite is typically red or greenish gray, medium to coarse grained, and often exhibits mm-scala irregular ? aegirine-filled cracks and joints.

Fenite is often transected by numerous veins and dikelets of white sôvite with mafic silicate-rich margins, giving the rock a megascopic mosaic texture with angular cm-scale fragments of fenite in a matrix of white sôvite - see fig. 02.

Fenite is characteristically composed of K-feldspar and aegirine +/- Na-amphibole as the dominating phases while calcite, apatite, quarz, titanite, zirkon and pyrite occurs as minor constituents (Sæther, 1957, Olmore, 1982).

Syenitic fenite/Nepheline syenite

Where the metasomatic alterationprocess is almost complete the rock typically consists of K-feldspar, albite, chlorite, aegirine and biotite (Olmore, 1982) and is termed syenitic fenite.

Pulaskitic fenite (Sæther, 1957) is a completely recrystallized medium to coarse grained nepheline syenite with up to 3 mm euhedral dark aegirine crystals in an equigranular matrix of fine to medium grained K-feldspar, nepheline, calcite and ? biotite.

Pulaskitic fenite is seen at a few scattered localities along the shore of Lake Norsjø.

Fenite breccias

Along the northwestern margin of the Hydro dike fenite is developed as a breccia with mm- to m- scale angular to rounded fragments of fenitized gneiss in a fine grained red matrix of syenitic fenite. Fenite breccia is also seen at scattered localities on the peninsular Torsnes.

Basic silicate rock

In the area around Torsnæs peninsular basic silicate rock is dominated by feldspar- biotite- calcite rocks, "which must be interpreted as altered fenites and shonkinites" (Sæther, 1957 p. 82).

Between the Hydro Dike and the Cappelen Quarry basic silicate rock occurs as variable amounts of melteigite, ijolite, biotite-sôvite and feldspar-biotite sôvite intermingled with fenite.

At a few scattered localities SW of the Cappelen Quarry a hybrid phase between basic silicate rock and fenite is developed. This hybrid phase occurs in the field as a dark, slightly reddish, medium grained, homogeneous rock.

Basic silicate rocks in the Søve-Tufte and Søve-Torsnæs area are heavily altered and mixed up with fenite (locally with søvite), and any further sub-division of the map unit in this area is probably of little or no value.

Søvite

At the type locality Søve (and elsewhere along the shore of Lake Norsjø) søvite occurs as veins and dikes sizing from mm- to 10 m-scale.

The most prominent localities in the area are the Hydro and Cappelen quarries, where søvite is seen as a white to slightly pink, massive, medium to coarse grained calcite-rock with variable amounts of magnetite and ? pyrochlore.

Field evidence of two generations of søvite intrusion is seen in a road cut at the entry to the Cappelen Quarry. The first generation has developed a søvite- fenite- migmatite complex, where white to pinkish søvite intrudes fenite as numerous irregular dikes and veins in mm- to m-scale. This søvite often contains layers and lumps of mafic silicates, dominantly biotite - see fig. 03.

The second generation of søvite intrusion is clearly related to a conjugated fault system, where søvite is intruded in fault planes as cm- to m- scale dikes - see fig. 04.

In the southwestern part of the Hydro Quarry, pegmatitic søvite is seen in a fault zone. Similar coarse grained søvite is seen at one locality in the northern part of the Cappelen Quarry. The pegmatitic søvite is white to grayish with up to 5 cm large euhedral calcite crystals.

Lamprophyre

Lamprophyric rocks outcrops in the Torsnæs area as a steeply dipping NW-SE trending dike (overall orientation of dike: 123°/85° NE) with maximum thickness 4 m and estimated length 50 m.

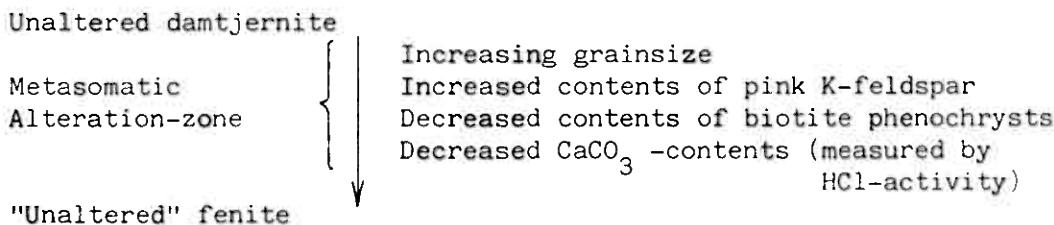
The rock is a dark gray biotite lamprophyre. Brownish-black euhedral biotite (? phlogopite)- phenocrysts reach 5 mm in size. Similar biotite-phenocrysts are locally set in a finegrained dark gray groundmass thus giving the rock a damtjernitic appearance. The transition zone between the two rock types is gradational (see fig. 05) thus indicating a close genetical relationship.

Field evidence also points towards a close genetical relationship between biotite lamprophyre and basic silicate rock/biotite- calcite fels. The contacts between the rock types are allways gradational within mm- to cm-scale, and there seem to be no significant change in CaCO_3 - content (as measured in the field by reaction with HCl) across the contacts between the different rock types.

The lamprophyric rocks are transected by cm- to dm- scale discordant veins/ dikes of rauhaugite type II.

Rauhaugite type II

The large rauhaugite "massif" in the centre of the Fen Complex is not considered in this report, but rauhaugite type II does outcrop at few other localities in the northern part of the complex.


In the eastern part of Cappelen Quarry and southwest of Torsnæs, rauhaugite type II outcrops as numerous mm- to dm-scale dikes (fig. 06). Weathered rauhaugite has a light brown rusty coating while it is yellowish-white or gray on fresh surfaces. The rock shows no or only weak HCl-activity, the dominating minerals being ankerite and dolomite with only minor amounts of calcite (Sæther, 1957 p. 99).

The rauhaugite type II dikes cut fenite, basic silicate rock, both generations of søvite and the lamprophyric rocks.

Damtjernite/Damtjernite breccia

Damtjernitic rocks are exposed at four different localities, three of which show damtjernite breccia.

The damtjernite is a dark porphyritic rock with mm- to cm-scale euhedral biotite phenocrysts in a dark gray fine grained groundmass. Biotite phenocrysts are often rounded along the edges, probably due to mechanical abrasion in the ascending magma. The damtjernite W of the entry to the Hydro Quarry shows a well exposed contact to the surrounding fenite, which clearly demonstrates that the damtjernite is younger than the fenite. The contact is developed as a metasomatic alteration-zone with the following characteristics:

From 0 to about 5 cm from the contact, the biotite phenocrysts in the damtjernite show a pronounced parallel orientation of crystallographic c-axes perpendicular to the contact, thus defining a rough flow-banding. This flow-banding is vertical, and could therefore support the idea of damtjernite intrusions as pipe- or dike-like bodies (Wiik, 1982 p. 11).

The damtjernitic rocks SE of the Hydro Quarry, S of the Cappelen Quarry and at Søve, are developed as breccias - see fig. 07. The matrix is like the previously described damtjernite, but in addition the rock contains numerous fragments of søvite, fenite and rauhaugite ranging in size from mm- to m-scale. In the damtjernite breccia S of the Cappelen Quarry the fragments/matrix-ratio exceeds 1 as seen in outcrops, and this is something to be considered in other parts of the Fen area as well, especially regarding interpretation of gravity measurements because the specific density of damtjernite is drastically reduced with increased contents of other rock fragments.

STRUCTURAL GEOLOGY

The dominating structural features within the area are dikes and faults, the Hydro Dike being the main single structural element. This dike is traced for about 350 m and reaches a thickness of 30 m, where it disappears into Lake Norsjø whereas the thickness in the SW part of the map area is reduced to about 10 m. In the Hydro Quarry strike of the dike is 34° and dip 79° - 84° towards SE.

From W to E along the shore of Lake Norsjø there is a tendency for major, early søvite dikes (including the Hydro Dike) to change direction of strike from NE-SW to E-W. This could reflect part of a ring-dike pattern around the centre of the whole Fen carbonatite complex, although the dip of the different dikes is somewhat variable, 80° N to 68° S. Other søvite-intrusions of this early phase occur as numerous irregular dikes and veins resulting in a migmatization of fenite/basic silicate rock - see fig. 08.

Later søvite-intrusion is controlled by a conjugated fault-pattern, which is well developed/exposed in the area between Tuftestollen and Søve - see fig. 04. Measurements on different pairs of conjugated faults show a systematic change in direction of max. stress (δ_3) when going from the Cappelen Quarry in the E to Tuftestollen in the W - see plate 01. Although the number of measurements is limited (8 pairs) the variation is considered significant, and it is interesting to note that δ_3 in all areas points "outwards" i.e. more or less away from the centre of the carbonatite complex. This could indicate that the conjugated faults and the associated late søvite dikes formed in response to a radiating stress directed away from the centre of the complex. This stress could be caused by a late-stage, high P residual søvite magma, the centre of which would be rather shallow (compared to present day erosional level) as the plunge of the δ_3 -axes varies between 5° - 21°. These speculations, however, needs much more testing in the field before any further conclusions regarding an eventual late-stage, high level søvite residual magma can be given. In this context chemical analysis of different generations of søvite material could be of great help, as these might delineate an eventual differentiation trend towards a late-stage residual søvite magma.

Major faults in the area are steep, trending NE-SW to NW-SE. Although it is difficult/impossible in the field to establish the magnitude and direction of slip along these faults, the outcrop-pattern shows that displacement must be considerable in some cases.

Based on observations from diamond drilling, Børlykke & Svinndal (1960, p. 107) postulates a vertical displacement of 60 m along the major fault in the SE part of the Cappelen Quarry, the SE block being the downfaulted one.

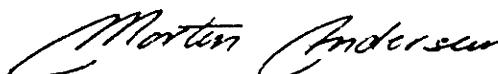
Observations along the major fault-system at Søve are scarce because the area has been used as waste disposal area during mining operations. There are however few outcrops along the eastern margin of the system, which show a considerable drag, indicating a horizontal sinistral slip-component in the order of 40 m. In addition to this horizontal component, Sæther (1957, p. 128) considers a downfaulting of the eastern block likely.

MINERALIZATION

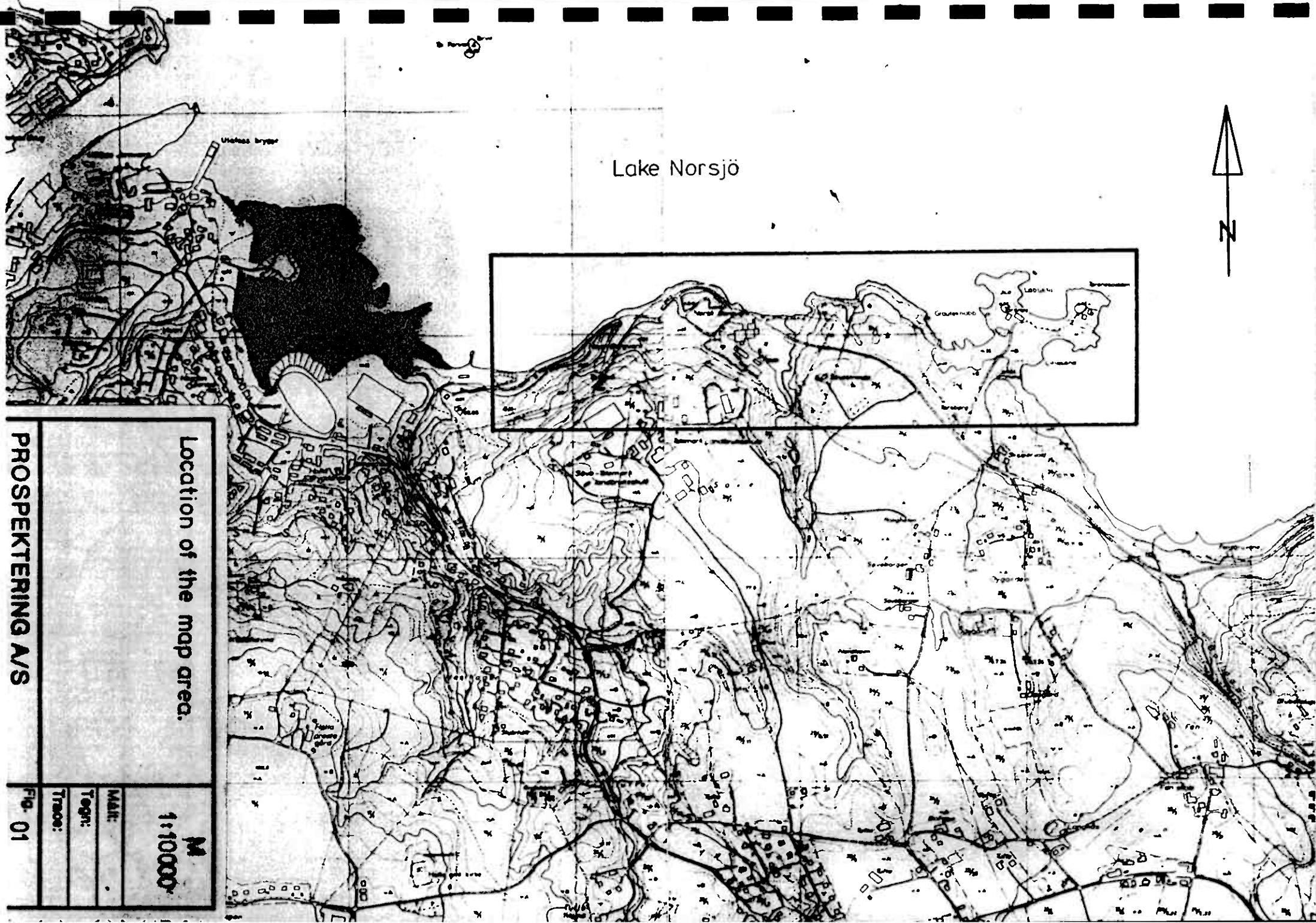
Except for the Cappelen and Hydro deposits, no mineralizations of potential economic grade is seen within the mapped area.

One sample of biotite, lamprophyre (MCA 83.001) was submitted to IFE for analysis for Nb, Ta, Y and P, giving the following results:

Nb_2O_5	0,05% (estimated 0,04%)
Ta_2O_5	0,05%
Y_2O_3	0,05%
P_2O_5	1,6%


It is obvious that this biotite-lamprophyre is unmineralized and in this respect far from comparable to biotite-apatite-lamprophyres encountered in the Tuftehavna area (Qvale, 1982), although the two rock types macroscopically show great similarities.

CONCLUSIONS


Although unmineralized, the occurrence of biotite-lamprophyre at Torsnæs is interesting, because it demonstrates a more widespread occurrence of lamprophyric rocks in the Fen area than hitherto known. As lamprophyres encountered in the Tuftehavna area are highly mineralized, this rock type should be looked for in other parts of the Fen Area (maybe as part of a ring-dike complex).

In the area considered in this report, attention should be paid to the part of the Tuftestollen, which represents the same geological setting (in relation to the centre of the complex) as the Tuftehavna area. Furthermore would it be desirable with a reexamination of material from earlier diamond drilling, aimed at locating eventual new occurrences of lamprophyric rocks.

Oslo, November 22. 1983

Morten C. Andersen
Exploration geologist

Location of the map area.

1:10000

M

MAP:

Tegn:

Trac:

Fig. 02. Pink fenite with mm-scale light sœvite veins. Note the mafic silicate-rich margins of the sœvitic veins, and the mosaic pattern of the veining.

Fig. 03. Flow-banding of mafic silicate-rich layers in white to pinkish sœvite.

Fig. 04. Conjugated faults and fault-controlled late søvitic dikes.

Fig. 05. Biotite-lamprophyre showing gradational contacts to surrounding damtjernite-like rock.

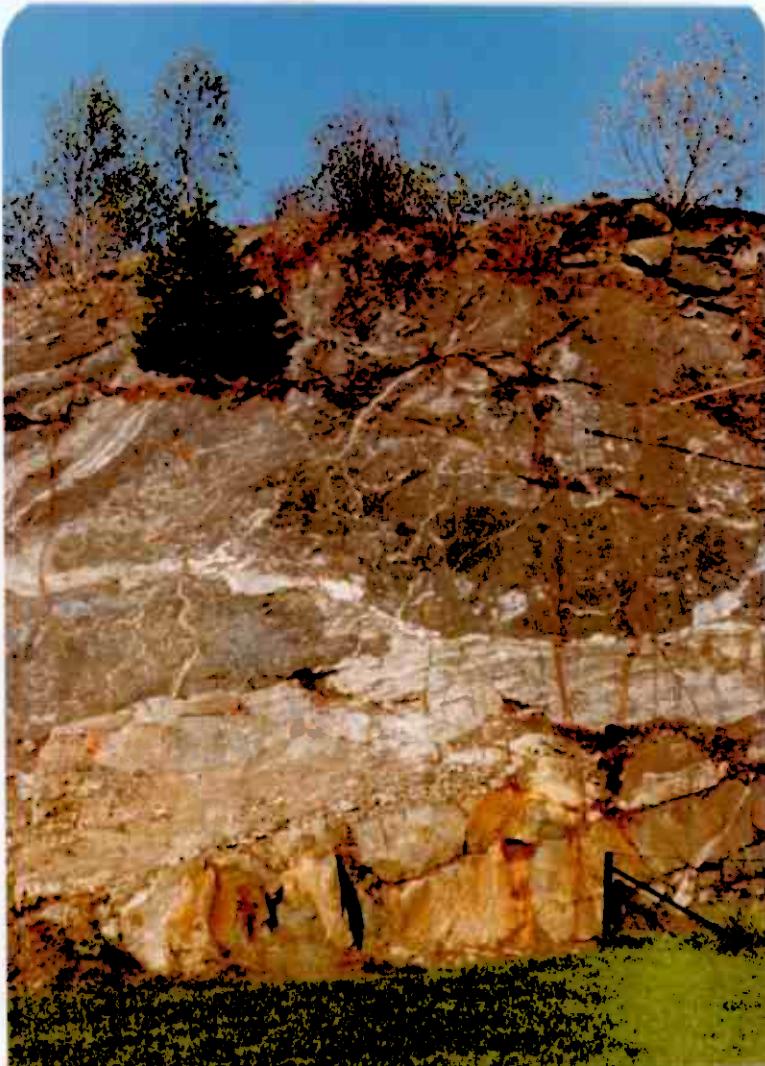


Fig. 06. Rusty weathering mm-cm-scale rauhaugite type II dikes transecting fenite and sôvite. Cappelen Quarry.

Fig. 07. Damtjernite with numerous fragments of sôvite, fenite and rauhaugite.

Fig. 08. Fenite/sôvite migmatite transected by late-stage, fault controlled sôvite dike.

REFERENCES

Bjørlykke, H. & Svinndal S. (1960) - The carbonatite and per-alkaline rocks of the Fen area - Mining and exploration work. NGU, 208 p. 105 - 110.

Olmore, S. (1982) - Fen Project - update on geological progress. UMN Fen report no. 03, 40 pp.

Qvale, H. (1982) - Tuftehavna, Fen Complex. South-Norway Geology, mineralogy and mineralizations. A/S Sydvaranger rapport 1354, 59 pp.

Sæther, E. (1957) - The alkaline rock province of the Fen Area in southern Norway. K.N.V. Skr. 1957, No 1, 150 pp.

Wiik, V.H. (1982) - The Fen Project. A geological survey of the Vipeto-Rullekoll Sub-area. Å.S.V. report, sept. 1982, 34 pp.

NATURIG RADIOAKTIVITET I BERGGRUNNEN GAMMASTRÅLINGSKART FENSFELTET, TELEMARK

Målestokk 1:10.000
Ekvidistanse 5 m

Radioaktivitet

Radioaktivitet er en fenomen som skyldes naturlig nedbryning av enkelte grunnstoffers atomkerner ved utslidelse av forskjellige typer stråling. Omtrent alt i våre omgivelser inneholder noe radioaktivt materiale.

y-stråling (y utløses - gassene):
- stråling består av partikler og bare har en nekkedde på noen en i luft, y-strålingen kan ikke trenge gjennom huden, y-strålingen kan bare påvirke kroppen hvis den radioaktive kilden har kommet inn i kroppen.

radioaktivitet i fjell
Alle bergarter inneholder større eller mindre mengder radioaktive grunnstoffer. Det viktigste er medlemmene av uran- og thorium-seriene, samt kalium-40. I enkelte bergarter i Fensfelta er det uvanlig høy konsentrasjon av elementene i thoriumserien.

Uran, thorium, rader
Uran, thorium og radon-222, og i thoriumserien deres gasser, radon-220 (thorium). Prosesene kan forenklet settes opp i følgende skema:

Uranserien:

Uran → Fiere radioaktive grunnstoffer → Radon gass → Radondreie (radioaktive grunnstoffer) → Stabilt by

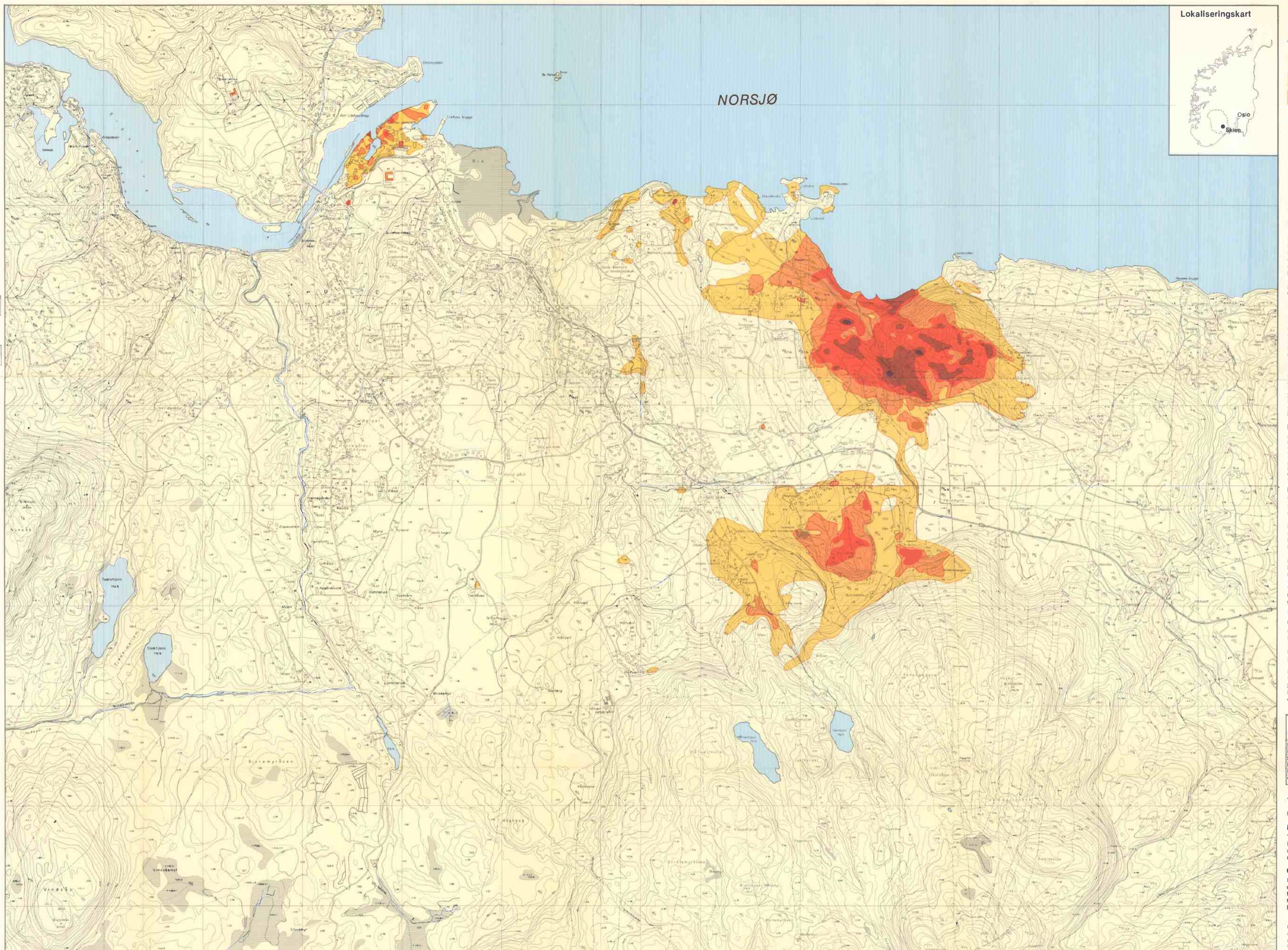
Thoriumserien:

Thorium → Fiere radioaktive grunnstoffer → Thoron gass → Thorondreie (radioaktive grunnstoffer) → Stabilt by

Siden radon og thoron er gasser, kan disse unngås fra fjell. Thorongassen brytes så raskt ned at den har ikke rekkevidde sammenheng med radongassene som brytes ned langt om. Særlig radon kan derfor komme inn og akkumuleres i bolighus.

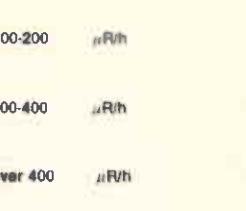
Helserisiko
For å få akutte stråleledder, må en bli utsatt for store mengder stråling. Det er ingen fare for akutte stråleledder ved en normal eksponering. Imidlertid er det en del av stråleleddene vi kunne øke risikoen for skadelige effekter ved påvirkning over lengre tid. Innhalering av thoron-eller radon-datte er da i de aller fleste tilfeller problemet. Dette kan ved opphold i ungdoms-gi høyere stråleledder i ungdomsvevet enn normalt.

Geologisk kart over radongassene i Norsjø området viser at høy radongasskonsentrasjon i bolighus også kan føre til overhøyhåpet av ungdomsvevet.


Lesere kan få flere opplysninger om dette temaet ved henvendelse til Statens institutt for Strålehygiene (SIS).

Innsamlet promønster

Prøver av alle bergartene i området er samlet inn og undersøkt i laboratoriet. Det er lagt fram på å få en geografisk best mulig fordeling, og et representativt utvalg av de ulike bergartstypene.


Prøverne er foretatt ved Geologisk Museum Oslo. Prøvene ble analisert med en spesialmetode på uran og thorium både på Geologisk Museum og SIS. Nærmeres opplysninger om analysemetoder etc. følger ved henvendelse til fortælleren. Tabellen viser variasjonene i målt uran-og thorium-konsentrasjoner i innsamlet promønster. Disse verdiene må en regne med vil bli noe justert hvis et større antall prøver analyseres.

Lesere kan få flere opplysninger om dette temaet ved henvendelse til Statens institutt for Strålehygiene (SIS).

TEGNFORKLARING TIL GAMMASTRÅLINGSKART

μR/h (mikrorentgen pr. time) er måleenheter for y-stråling

Feltmålinger

Feltmålinger ble foretatt med et barometrisk strålekomplett. Dette er en strålekomplett med et rometeret med et kalibrert i det mot et internasjonal kalibrert hoytrykk løsrekammer av type Reuter Stokes Environment Monitor (Strøm, kalibrert).

y-stråling fra radongassene i området er målt ved ulike steder i området. Målinger ble utført ved ulike steder i området ved hjelp av en spesiell fotostatisk teknikk. Topografi, elandsmålestokk og arealstrøk med måleprofilene er gjort.

y-stråler registrerte kontinuerlig langs profilene. Intensiteten ble kartlagt ved hvert målestokk. Målinger er lagt tettet i områdene med de største stråleintensiteten for å utnytte dem best mulig. Der de geologiske forholdene ikke gir godning for vanlig hoy y-stråling, er det foretatt færre og mer sprede målinger.

Bergartsgenologi

Bergartene i Fensfelta er dannede ved en uvanlig type vulkansk virksomhet. Det ca. 45 km² store området er sør på overflaten i dag, er et snitt gjennom tilførselsområdet til en vulkan som lå høyere opp. Rørt fortsetter med en relativt smal og indirk form over 15 km² nedover i en dyp og smal dal. Dette er et tilførselsområde til en vulkan som ligger 12 km øst for området som vulkanen dannet ca. 1500 år før. Denne vulkanen er en av de største i landet. Denne har dørfordonet blitt til ned i dagens nivå. De landskapet som er dannet ved vulkanen består av vulkanisk og metamorf bergart.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i området er kalibrert danner ved sterke forbindelser med en vulkan. Det er i dag helt bort fra vulkanen.

Bergartene som er foretatt i om

